
DARSTELLUNG NEUER CHROMTRICARBONYL-KOMPLEXE VON [2.2] PARACYCLOPHANEN 1)

Aboul Fetouh Mourad und Henning Hopf *

Institut fur Org. Chemie der Universität, Am Hubland, D-8700 Würzburg, BRD

[m.n] Cyclophane sind als \mathfrak{N} -Liganden von Interesse, da sie auf vier verschiedene Weisen mit Ubergangsmetallen Koordinationskomplexe bilden konnen: Für den Fall des [2.2] Paracyclophans sind Mono-(1) und Bis-Komplexe (2) mit "externem" Metallatom moglich, das Metallatom kann sich – wie in 3 – zwischen den Benzolringen befinden und schließlich sind wegen der bidenten Natur des [2.2] Paracyclophans auch polymere Strukturen (z.B. 4) denkbar:

Trotz dieser jungsten Erfolge kann von einer systematischen Untersuchung der obigen Metall- $\widetilde{\eta}$ -Komplexe nicht die Rede sein.

Da unterschiedlich substituierte 8) und mehrfach verklammerte 9,10) Deri-

vate des [2.2]Paracyclophans durch eine neue Synthesemethode gut zuganglich geworden sind, wurde damit begonnen, die Frage des Zusammenhangs von Substitutionsgrad und -typus und Stabilitat von [2.2]Paracyclophanchromtricarbonyl-Komplexen genauer zu studieren. Die vorliegende Arbeit, in der erste Resultate mitgeteilt werden, beschreibt die Umsetzung von neun [2.2]Paracyclophanen $(\underline{5a} - \underline{1})$ mit Chromhexacarbonyl in Diglyme bei 130-150°C unter Stickstoff 2:

	R ¹	R ²	R ³	R ⁴	R ⁵	Ausbeute,%
a)	со ₂ сн ₃	со2сн3	со ₂ сн ₃	со ₂ сн ₃	н	0
ь)	CF ₃	CF ₃	CF ₃	CF ₃	н	0
c)	CN	CN	CN	CN	н	Spur
d)	н	со ₂ сн ₃	со ₂ сн ₃	н	н	Spur
e)	н	сн ₂ он	сн ₂ он	н	н	Zersetzung von Cr(CO)6
f)	н	CH ₂ Br	CH ₂ Br	н	н	Zersetzung von Cr(CO)6
g)	н	снз	снз	н	н	38
h)	снз	снз	СНЗ	снз	н	42
1)	R ¹ -R ⁵ : (сн ₂ сн ₂ , к	40			

Von den tetrasubstituierten Derivaten $\underline{5a}$ - \underline{c} reagiert nur die Cyanoverbindung in schlechter Ausbeute (< 1%). Daß zwei Methoxycarbonylgruppen ausreichen, daß [2.2] Paracyclophan-System so st**ark** zu desaktivieren, daß unter den obigen Bedingungen praktisch keine Komplexierung mehr eintritt, zeigt Derivat $\underline{5d}$. Der entsprechende Monoester (R¹ = $\mathrm{CO_2CH_3}$, R²= R^3 = R^4 = R^5 : H) reagiert hingegen glatt zum Chromtricarbonyl-Komplex $\underline{^3}$. Im Falle der Bis(hydroxymethyl)- bzw. Bis(brom-

methyl) Verbindungen (<u>5e</u> bzw. <u>5f</u>) wird keine Komplexbildung beobachtet; vielmehr scheint sich das Chromhexacarbonyl zu zersetzen. Problemlos verlauft hingegen die Komplexierung der elektronenreicheren Systeme <u>5g</u>, <u>h</u> und <u>1</u>. Von den durch die ublichen spektroskopischen Methoden sowie die Elementaranalyse (vgl. Tab.) charakterisierten, intensiv gelben Feststoffen <u>6</u> weist <u>6h</u> die großte Bestandigkeit auf. Wird dieses Derivat bei Raumtemperatur in Methylenchlorid mit Tetracyanoethylen (TCNE) umgesetzt, so tritt Ligandenaustausch unter Bildung des violett-schwarzen TCNE-Komplexes <u>7</u> ein, der sich in den spektroskopischen Daten und Schmelzpunkt (Mischschmp.) nicht von dem direkt aus <u>5h</u> und TCNE hergestellten Produkt unterscheidet:

Die Frage nach dem Verbleib des freigesetzten anorganischen Liganden <u>8</u> ist noch nicht geklart; es ist nicht ausgeschlossen, daß sich <u>8</u> in einem aktivierten Zustand befindet und sich deshalb die obige, in der Phan-Chemie bislang nicht beobachtete Reaktion zur Übertragung des Cr(CO)₃-Fragments auf andere Akzeptoren eignet. Auch die Stereochemie dieser Substitution bedarf einer genaueren Untersuchung.

Fur nutzliche praktische Hinweise bei der Durchfuhrung der obigen Reaktionen danken wir Doz. Dr. <u>W. Malisch</u> und Dipl.Chem. <u>W. Ries</u> (Institut fur Anorganische Chemie der Universität Wurzburg), für finanzielle Hilfe dem Fonds der Chemischen Industrie.

Literatur:

- 1) 9. Mitteilung über Cyclophane. 8. Mitteilung. K.L. Noble, H. Hopf, M. Jones, <u>Jr. und S.L. Kammula</u>, Angew.Chem., <u>90</u>, 629 (1078). Angew.Chem.internat.Edit., <u>17</u>, 602 (1978).
- 2) D.J. Cram und D.I. Wilkinson, J.Amer.Chem.Soc., 82, 5721 (1960).
- 3) <u>E. Langer und H. Lehner</u>, Tetrahedron, <u>29</u>, 375 (1973).

- 4) F.Cristiani, D.DeFilippo, P.Deplano, F.Devillanova, A.Diaz, E.F.Trogu und G.Verani, Inorg.Chim.Acta, 12,119(1975).
- 5) <u>H.Ohno</u>, <u>H.Horita</u>, <u>T.Otsubo</u>, <u>Y.Sakata</u> und <u>S.Misumi</u>, Tetrahedron Letters, 265 (1977).
- 6) <u>Ch.Elschenbroich</u>, <u>R.Moeckel</u> und <u>U.Zenneck</u>, Angew.Chem., <u>90</u>,560(1978). Angew.Chem.internat.Edit., 17, 531(1978).
- 7) Ch. Elschenbroich, Privatmitteilung.
- 8) I.Bohm, H.Herrmann, K.Menke und H.Hopf, Chem.Ber., 111,523(1978).
- 9) <u>S.Trampe</u>, <u>K.Menke</u> und <u>H.Hopf</u>, Chem.Ber., <u>110</u>, 371 (1977).
- 10) <u>W.Gilb</u>, <u>K.Menke</u> und <u>H.Hopf</u>, Angew.Chem., <u>89</u>,171(1977). Angew.Chem.internat. Edit., 16,199(1977).

Charakterisierung der Derivate <u>6g</u>, <u>h</u> und <u>i</u> sowie <u>7</u>:

Verb.	Schmp.,°C	IR (KBr,cm ⁻¹)	UV(Acrylnitril, 入 _{max} (nm), Є).	NMR(CDCl $_3$,int. TMS, δ).
<u>6g</u>	165-167	1950(vs) 1890-1860 (vs)	332(9690)	kompl.Ring: 2.03(s,3H, CH ₃), 4.25(d,J _m =1.8Hz, 1H), 4.52(d,J _o =5.0Hz, 1H), 4.65(dd,J _o =5.0, J _m =1.8Hz,1H); nicht- kompl.Ring:2.25(s,3H, CH ₃),6.43(d,J _m =1.8Hz,1 H),6.50(d,J _o =5.0Hz,1H), 6.75(dd,J _o =5.0,J _m =1.8 Hz,1H); 3.15 (m,8H,CH ₂ CH ₂)
<u>6h</u>	230-231	1950(vs) 1860-1830 (vs)	334(5500)	kompl.Ring: 4.63(s,2H, Ar-H),1.93(s,6H,CH ₃); nicht-kompl.Ring: 6.57 (s,2H,Ar-H),2.10(s,6H, CH ₃),2.77 (m,8H,CH ₂ CH ₂).
61	175-177	1950(vs) 1880-1850 (vs)	335(8400)	kompl.Ring: 4.79(m,3H), nicht-kompl.Ring:6.50(m, 3H), 4.12(m,12H,CH ₂ CH ₂).
7	137-140	2960(s) 1480(s) 870(vs) 799(vs) 722(vs)	227(17300) 255(15000) 261(15000) 270(13100) 460(1500)	1.77(s,12H,CH ₃),3.00 (m,8H,CH ₂ CH ₂),6.47 (s, 4H,Ar-H).